Треугольник, полученный соединением середин сторон данного треугольника, назовем серединным треугольником. На рисунке A`B`C` есть срединный треугольник треугольника АВС. Рассмотрим так же две медианы AA` и BB`, пересекающиеся в точке G, две высоты треугольника ABC, пересекающиеся в точке H, и две высоты треугольника A`B`C` пересекающиеся в точке O.
Во-первых, стороны треугольника A`B`C` параллельны сторонам треугольника АВС, поэтому эти треугольники подобны.
Далее, |C`B`|=1/2|BC|, поэтому отношение длин любых двух соответствующих отрезков (а не только соответствующих сторон) будет равно 1:2. В действительности, отрезки B`C`, C`A`, A`B` разбивают треугольник ABC на четыре конгруэнтных треугольника. Кстати, точка P –середина отрезка B`C` – также является и серединой отрезка AA`.
Далее мы видим, что AC`A`B` – параллелограмм, следовательно, прямая AA` делит пополам отрезок B`C`. Поэтому медианы треугольника A`B`C` лежат на медианах треугольника ABC, а это значит, что оба треугольника имеют один и тот же центроид G.
Высоты треугольника A`B`C`, изображенные на рисунке, являются срединными перпендикулярами сторон AB и BC треугольника ABC. Отсюда делаем вывод, что точка O – ортоцентр треугольника A`B`C` – является время и центром окружности, описанной вокруг треугольника ABC.
Так как точка H – ортоцентр треугольника ABC, а точка O – ортоцентр подобного ему треугольника A`B`C`, то |AH| = 2 |OA`|. По теореме 3.2. |AG| + 2 |GA`|. И так как оба отрезка, AD и OA`, перпендикулярны стороне BC, то они параллельны. Следовательно, ÐHAG = ÐOA`G, Ñ HAG ¥ Ñ OA`G и ÐAGH = Ð A`GO.
Этим показано, что точки O, G, H коллинеарны и |HG| = 2 |GO|, то есть справедлива.
Теорема 7.1: Ортоцентр, центроид и центр описанной окружности произвольного треугольника лежат на одной прямой. Центроид делит расстояние от ортоцентра до центра описанной окружности в отношении 2:1.
Окружность девяти точек
Рассмотрим рисунок. На нем точки K, L, M – середины отрезков AH, BH, CH, лежащих на высотах. Так как BC – общая сторона двух треугольников ABC и HBC, а точки C`, B` и L, M являются серединами других их сторон соответственно, то отрезки C`B` и LM параллельны прямой BC. Аналогично, так как AH – общая сторона двух треугольников BAH и CAH, то оба отрезка C`L и B`M параллельны прямой AH. Следовательно, B`C`LM – параллелограмм. Так как отрезки BC и AH – перпендикулярны, то этот параллелограмм – прямоугольник. Аналогично, A`B`KL – прямоугольник. Следовательно, A`K, B`L, C`M являются тремя диаметрами окружности, как показано на рисунке.
Так как ÐA`DK – прямой, то эта окружность проходит через точку D. Точно также она проходит через точки E и F.
Теорема 8.1: Основания трех высот произвольного треугольника, середины трех его сторон и середины трех отрезков, соединяющих его вершины с ортоцентром, лежат на одной окружности радиуса (Ѕ)R.
Теорема 8.2. Центр окружности девяти точек лежит на прямой Эйлера, точно в середине отрезка между ортоцентром и центром описанной окружности.
Педальный треугольник
Ортотреугольник и серединный треугольник являются примерами сопутствующих треугольников более общего типа. Пусть Р – любая точка внутри данного треугольника АВС, и пусть из точки Р на стороны АВ, АС, ВС опущены перпендикуляры РА1, РВ1, РС1. Треугольник, А1В1С1 вершинами которого являются основания этих перпендикуляров, называется педальным треугольником треугольника АВС для педальной точки Р.
Теорема 9.1: Если расстояния от педальной точки до вершин треугольника АВС равны x, y, z, то длины сторон педального треугольника равны
В частном случае, когда
, это утверждение общеизвестно.
Теорема 9.2: Третий педальный треугольник подобен исходному.
Доказательство следует из чертежа.
Познавательно о обучении:
Экспериментальная проверка эффективности разработанной системы
Для проверки сформированности знаний и умений учащихся по данной теме были проведены два контрольных диктанта. Первый диктант учащиеся писали сразу после изучения грамматической темы: «Родовые окончания имён прилагательных», второй через два месяца. Диктанты писали пять человек. Текст диктанта. Экс ...
Методические рекомендации по использованию видеоматериалов на уроках
английского языка
Мы считаем возможным дать несколько методических рекомендаций для использования видеоматериалов на уроках английского языка с целью развития навыков говорения: Использование видеоматериалов на уроке английского языка должно быть уместным к теме урока для лучшего запоминания учащимися тем, предусмот ...
Анализ изложения темы «Линейная функция» в основных учебниках по алгебре
Так как методические рекомендации по проведению контроля мы будем рассматривать на примере содержании курса алгебры 7 класса по теме «Линейные функции», то сначала проведём сравнительный анализ изложения этого материала в основных действующих учебниках по алгебре для 7 класса. Сравнительный анализ ...