Обобщенная теорема синусов

Страница 2

Теорема 3.4: Биссектрисы трех внутренних углов треугольника конкурентны.

Окружность с центром в точке I и радиуса r касается всех трех сторон и поэтому является вписанной окружностью.

Вписанная и вневписанная окружности

На рисунке изображена вписанная окружность, касающаяся сторон ВС, СА и АВ в точках X, Y, Z. Так как две касательные к окружности, проведенные из внешней точки, равны, то получаем, что |AY|=|AZ|, |BZ|=|BX|, |CX|=|CY|. На рисунке длины этих отрезков обозначены x, y, z так что y+z=a, z+x=b, x+y=c.

Складывая эти равенства и используя введенное Эйлером обозначение s для полупериметра (от «semiperimetr»), получим 2x+2y+2z= a + b + c=2s, поэтому x + y + z=s, т.е. справедлива.

Теорема 4.1: Для треугольника, изображенного на рисунке, выполняются соотношения:

x=s-a,

y=s-b,

z=s-c.

Так как треугольник IBC имеет основание равное а, высоту r, то его площадь равна: Прибавив к нему аналогичные выражения для и мы получим: следовательно, теорема доказана.

Теорема 4.2: Для треугольника, изображенного на рисунке, выполняется соотношение:

SABC = sr.

На рисунке изображен треугольник , стороны которого являются биссектрисами внешних углов треугольника АВС. Любая точка на биссектрисе угла В равноудалена от прямых АВ и ВС. Аналогично: любая точка на прямой равноудалена от прямых ВС и СА.

Следовательно, точка I, в которой эти биссектрисы пересекаются, находится на одинаковом расстоянии r от всех трех сторон. Так как I равноудалена от сторон АВ и АС, то она должна принадлежать множеству точек, равноудаленных от этих прямых, то есть она должна лежать на прямой А1, внутренней биссектрисе угла А.

Теорема 4.3: Внешние биссектрисы любых двух углов треугольника конкурентны с внутренней биссектрисой третьего угла.

Окружность с центром в точке I радиуса r, касающаяся всех трех сторон треугольника, является одной из трех вневписанных окружностей. Каждая из вневписанных окружностей касается одной из сторон треугольника внутри, а двух других сторон (продолженных) извне.

Обозначив точки касания как на рисунке, две касательные из одной точки к окружности имеют одинаковые длины, то: ;

Следовательно, касательная из точки В (или любой другой вершины) к вневписанной окружности, расположенной за противолежащей стороной, имеет длину s. Действительно: .

Кроме того, так как: .

И так далее, то также и: .

3.5 Теорема Штейнера-Лемуса

Теорема 5.1: Любой треугольник, у которого равны длины биссектрис двух углов (измеряемые от вершины до противоположной стороны), является равнобедренным.

Одно из простейших доказательств этой теоремы опирается на следующие две леммы:

Лемма 5.1.1: Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.

Доказательство: Две равные хорды стягивают углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух неравных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно, меньший острый угол с вершинами на окружности.

Страницы: 1 2 3

Познавательно о обучении:

Сущность эстетического воспитания
Идеи эстетического воспитания зародились в глубокой древности. Представления о сущности эстетического воспитания, его задачах, цели изменялись, начиная со времен Платона и Аристотеля вплоть до наших дней. Эти изменения во взглядах были обусловлены развитием эстетики как науки и пониманием сущности ...

Новое экономическое образование 21 века
Реформы в России нуждаются в выработке и развитии нового экономического мышления, в качественном прорыве в уровне экономического образования. Все еще сказываются традиции советского периода, когда экономические исследования и дисциплины были оторваны от мировой науки, а сама экономическая теория ос ...

Практическое значение научных исследований
наука педагогика исследование практический Человек, далекий от науки, услышав о новом научном открытии, часто задает вопрос: «А какой от него прок? Для чего оно?» При этом подразумевается, что ни одно научное исследование не имеет смысла, если оно не может быть немедленно применено на практике. Это ...

Категории

Copyright © 2026 www.fiteducation.ru