Теорема 3.4: Биссектрисы трех внутренних углов треугольника конкурентны.
Окружность с центром в точке I и радиуса r касается всех трех сторон и поэтому является вписанной окружностью.
Вписанная и вневписанная окружности
На рисунке изображена вписанная окружность, касающаяся сторон ВС, СА и АВ в точках X, Y, Z. Так как две касательные к окружности, проведенные из внешней точки, равны, то получаем, что |AY|=|AZ|, |BZ|=|BX|, |CX|=|CY|. На рисунке длины этих отрезков обозначены x, y, z так что y+z=a, z+x=b, x+y=c.
Складывая эти равенства и используя введенное Эйлером обозначение s для полупериметра (от «semiperimetr»), получим 2x+2y+2z= a + b + c=2s, поэтому x + y + z=s, т.е. справедлива.
Теорема 4.1: Для треугольника, изображенного на рисунке, выполняются соотношения:
x=s-a,
y=s-b,
z=s-c.
Так как треугольник IBC имеет основание равное а, высоту r, то его площадь равна: Прибавив к нему аналогичные выражения для
и
мы получим:
следовательно, теорема доказана.
Теорема 4.2: Для треугольника, изображенного на рисунке, выполняется соотношение:
SABC = sr.
На рисунке изображен треугольник , стороны которого являются биссектрисами внешних углов треугольника АВС. Любая точка на биссектрисе угла В равноудалена от прямых АВ и ВС. Аналогично: любая точка на прямой
равноудалена от прямых ВС и СА.
Следовательно, точка I, в которой эти биссектрисы пересекаются, находится на одинаковом расстоянии r от всех трех сторон. Так как I равноудалена от сторон АВ и АС, то она должна принадлежать множеству точек, равноудаленных от этих прямых, то есть она должна лежать на прямой А1, внутренней биссектрисе угла А.
Теорема 4.3: Внешние биссектрисы любых двух углов треугольника конкурентны с внутренней биссектрисой третьего угла.
Окружность с центром в точке I радиуса r, касающаяся всех трех сторон треугольника, является одной из трех вневписанных окружностей. Каждая из вневписанных окружностей касается одной из сторон треугольника внутри, а двух других сторон (продолженных) извне.
Обозначив точки касания как на рисунке, две касательные из одной точки к окружности имеют одинаковые длины, то: ;
Следовательно, касательная из точки В (или любой другой вершины) к вневписанной окружности, расположенной за противолежащей стороной, имеет длину s. Действительно: .
Кроме того, так как: .
И так далее, то также и:
.
3.5 Теорема Штейнера-Лемуса
Теорема 5.1: Любой треугольник, у которого равны длины биссектрис двух углов (измеряемые от вершины до противоположной стороны), является равнобедренным.
Одно из простейших доказательств этой теоремы опирается на следующие две леммы:
Лемма 5.1.1: Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.
Доказательство: Две равные хорды стягивают углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух неравных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно, меньший острый угол с вершинами на окружности.
Познавательно о обучении:
Экономическое образование в СССР
Экономическое образование в СССР, подготовка специалистов по планированию, учёту, финансам и другим направлениям экономической работы в народном хозяйстве, в области научной и педагогической деятельности. Возникновение экономических учебных заведений связано с развитием промышленности и торговли. В ...
Организация проведения зачета
Зачеты можно проводить по-разному. Это зависит от стиля работы учителя, его опыта, комплектности и состава класса. Опишем возможные варианты. Остановимся на практике организации тематических зачетов. Тематический зачет рекомендуется проводить на уроке (в старших классах для этой цели могут быть выд ...
Моральное воспитание как процесс организации
разнообразной деятельности учащихся и формирование у них нравственных качеств
Рассматривая содержание нравственного воспитания, автор отмечал, что оно должно быть направленно на формирование у личности нравственных отношений к идеологии и политике страны, к родине, труду, общественному достоянию, охране природы, к людям и самой себе. Но моральные отношения не возникают и не ...