Лемма 5.1.2: В треугольнике с двумя различными углами меньший угол обладает большей биссектрисой.
Доказательство: Пусть АВС – треугольник, в котором угол В меньше угла С, как на рисунке; пусть отрезки BM и CN делят пополам углы В и С. Мы хотим доказать, что |BM|>|CN|. Возьмем точку М` на отрезке ВМ так, чтобы ÐM`CN=1/2 ÐB. Так как это угол равен углу M`BN, то четыре точки N, B, C, M` на одной окружности.
Поскольку ÐB < 1/2(ÐB+ÐC) < 1/2(ÐA+ÐB+ÐC), то ÐCBN < M`CB <90°.
По лемме 5.1.1 |CN|<|M`B|. Следовательно, |BM|>|BM`|>|CN|.
Доказательство теоремы: Часто бывает, что теорема может быть выражена в форме «противоположной к обратной» – эквивалентной к обратной. Вместо доказательства теоремы 1.51 для нас будет достаточно доказать, что если в треугольнике АВС В ¹ С, то |BM| ¹ |CN|. Но это есть прямое следствие леммы 5.1.2.
Ортотреугольник
Теорема 6.1: Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
Одно из простейших доказательств опирается на две следующие леммы:
Лемма 6.1.1: Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.
Доказательство: Две равные хорды стягивают равные углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух неравных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно; меньший угол с вершиной на окружности.
Лемма 6.1.2: В треугольнике с двумя различными углами меньший угол обладает большей биссектрисой.
Доказательство: Пусть АВС – треугольник, в котором угол В меньше угла С, как на рисунке; пусть отрезки ВМ и CN делят пополам углы В и С. Мы хотим доказать, что
. Возьмём точку М` на отрезке ВМ так, чтобы
. Так как этот угол равен углу M`BN, то четыре точки N, B, C, M` лежат на одной окружности. Поскольку
то
. По лемме 6.1.1
. Следовательно,
Доказательство теоремы 6.1: Часто случается, что теорема может быть выражена в форме «противоположной к обратной» – эквивалентной первоначальной.
Вместо доказательства самой теоремы 6.1. нам достаточно доказать, что если в треугольнике АВС
, то
. Но это есть прямое следствие леммы 6.1.2.
Теорема 6.2: Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
Мы уже отметили на рисунке, что
. А так как отрезок HD перпендикулярен отрезку DB, то и отрезок FD должен быть перпендикулярен отрезку OB. Перпендикулярность отрезков DE и OC, а также EF и OA показывается аналогично.
Познавательно о обучении:
Урок – литературная композиция
Тема: «Мне все равно эта жизнь полюбилась…» Особенности художественного мира С. А. Есенина. Концептуальная цель курса: развитие способности эстетического восприятия и оценки явлений литературы, художественно воплощенных в ней явлений жизни Цель урока: познакомиться с творческой биографией поэта, ху ...
Темы, предлагаемые дошкольникам разных возрастных групп для обучения
рассказыванию по памяти
Обучение рассказам по памяти начинается с начала года в старшей группе. Более легкие темы — из общего, коллективного опыта, т. е. о том, что было ранее воспринято всеми детьми группы совместно с воспитателем. Этот вид рассказа требует произвольной памяти. Психологами установлено, что самый сильный ...
Упражнения на развитие пространственной ориентации на математическом материале
1. Для организация внимания, развитие счетных навыков выполняется упражнение «Перекличка» – дети по очереди называют свой порядковый номер. Последнее число фиксируется (Петя – седьмой, сколько всего детей сегодня на занятии?). 2. Для развития координации и умения переводить пространственно заданную ...