5) При каких с уравнение не имеет корней?
В обязательную часть включаются задачи из списка обязательных результатов обучения или аналогичные им. Понятно, что в один вариант невозможно включить все задачи списка. Однако для того, чтобы обеспечить как можно большую полноту проверки, надо шире охватить все группы умений, представленных на уровне обязательной подготовки. В приведенной работе присутствуют все основные умения по проверяемой теме: решение линейных неравенств (причем предусмотрены случаи деления обеих частей неравенства как на положительное, так и на отрицательное числа, а также необходимость выполнения некоторых тождественных преобразований), решение систем линейных неравенств с одной переменной, решение систем, записанных в виде двойного неравенства. Поэтому если ученик справился со всеми задачами первой части работы, то можно с уверенностью сказать, что он овладел материалом на уровне обязательной подготовки. Смотрите подробности полиэфирная смола оптом тут.
Бывают случаи, когда в одном варианте трудно представить все основные группы задач. Такая ситуация часто складывается, например, в геометрии. Так, тема «Сумма углов треугольника» включает в себя три фрагмента: «Параллельность прямых», «Сумма углов треугольника», «Прямоугольный треугольник». В последний входят и признаки равенства прямоугольных треугольников. Поэтому, чтобы охватить весь объем содержания, нужны, по крайней мере, три задачи. Но задачи по геометрии (даже несложные), как правило, более трудоемки, чем по алгебре. В связи с этим можно или увеличить время, отводимое на соответствующий тематический зачет (например, взять два урока), или же пойти по пути составления разных вариантов. В последнем случае в каждый вариант можно включить две задачи, относящиеся к каким-либо двум из указанных трех фрагментов. Например, в одном из них – задачи на признаки параллельности прямых и сумму углов треугольника, в другом – на свойства углов при параллельных прямых и секущей и признаки равенства прямоугольных треугольников. Важно, чтобы были охвачены все группы задач.
Для такого подхода к составлению вариантов особенно благоприятны условия открытого зачета. Готовясь к зачету, ученик знает, что все виды задач войдут в проверку, будут включены в какой-нибудь из вариантов. Какой именно вариант ему достанется, ученик не знает, но ему известно, что, не решив хотя бы одну задачу, он не сдаст зачет. Поэтому учащийся вынужден готовиться по всем обязательным задачам. В случае сомнений по поводу знаний ученика учитель всегда может на зачете предложить ему еще задачу.
Основное назначение дополнительной части – дать учителю возможность дифференцировать учащихся по уровню их подготовки, а также стимулировать школьников, которым хорошо дается математика, к совершенствованию своей подготовки, развитию формируемых умений. Для этой цели нет необходимости обеспечивать полноту охвата материала темы на более высоком уровне. Для выставления ученику повышенной оценки достаточно убедиться в том, что он проявляет полное владение обязательными результатами обучения, то есть имеет хорошую опорную подготовку, и при этом справляется с решением более сложных задач.
Понятно, что при таком подходе необязательно предлагать всем учащимся аналогичные задачи. Поэтому в разные варианты можно включать разные по содержанию задания, важно лишь проследить, чтобы они были примерно одинаковы по уровню сложности. Так, например, в приведенном зачете по теме «Неравенства» дополнительная часть содержит два задания. Одно из них требует более развитой по сравнению с обязательным уровнем техники решения неравенств. Другое с технической стороны несложно. Но здесь ученику придется найти способ решения задачи, применить знания из предыдущей темы, иными словами, проявить определенную умственную инициативу и самостоятельность. Таким образом, некоторые ученики могут выполнять оба задания, продемонстрировав широту своей подготовки; другие имеют возможность, выбрав задание, проявить себя в том, в чем они сильнее.
Объем зачета, его обязательной части, а также дополнительных заданий планируется таким образом, чтобы их выполнение было посильно успевающему ученику в отведенное для зачета время.
Можно увеличить число дополнительных заданий, включив резервные и предоставив учащимся возможность выбора.
Необходимо иметь в виду, что к содержанию и уровню сложности дополнительных заданий рекомендуется относиться критически и при необходимости или желании учителя пересматривать их, учитывая особенности класса.
Текущий зачет
Текущие зачеты проводятся несколько раз в ходе изучения темы. От тематических они отличаются тем, что охватывают меньший по объему материал; поэтому, как правило, на их проведение не требуется отводить целый урок. Это могут быть небольшие работы, рассчитанные на 10-20 мин и направленные на проверку одного – двух умений, формируемых в течение нескольких уроков.
Познавательно о обучении:
Психолого-педагогические основы изучения понятия одарённость
Под одарённостью ребёнка понимается более высокое, чем у его сверстников при прочих равных условиях, восприимчивость к учению и более выраженные творческие проявления. Понятие "одарённость" происходит от слова "дар". Таким образом, одаренность – это дар и означает особо благопри ...
Требования к знаниям и умениям
Это планируемый результат обучения, который предполагает наличие таких компонентов: 1. Основное содержание обучения (то, что необходимо знать) 2. Степень усвоение основного содержания до определенного уровня. Уровни усвоения: 2.1. Воспроизведение. 2.2. Умение работать по образцу (подставлять формул ...
Требования к проведению наблюдения
В повседневной жизни в течение учебного года в любой возрастной группе проводится много разных наблюдений в природе. От организации и методических приемов, которые использует воспитатель, зависят усвоение детьми содержания наблюдений, развитие интереса к ним и желания добровольно в них участвовать. ...