Исследование модели.
С помощью геометрических теорем необходимо доказать, что построенный отрезок PQ действительно является перпендикуляром к прямой a.
Задача.
Дан неразвернутый угол A. Построить его биссектрису. Формальная модель.Построим формальную модель процесса геометрического построения, зафиксировав его в форме алгоритма: Смотрите подробности курсы по HTML для подростков Владивосток на сайте.
1. Построить окружность произвольного радиуса с центром в вершине заданного угла А, которая пересечет стороны угла в точках В и С.
2. Построить две окружности радиуса ВС с центрами в точках B и C. Точку пересечения окружностей внутри угла обозначить буквой Е.
3. Через вершину угла А и точку пересечения окружностей Е провести прямую. Луч АЕ – биссектриса заданного угла.
Компьютерная модель.
Реализуем геометрическое построение в соответствие с разработанным алгоритмом с использованием системы КОМПАС-3D.
|
|
Построение биссектрисы неразвернутого угла. | |
|
1 |
Построить неразвернутый угол и окружность с центром в точке А (вершине угла). На панели Геометрические построения щелкнуть по кнопке Ввод отрезка и построить два отрезка, выходящих из точки А. Щелкнуть по кнопке Ввод окружности и в автоматическом режиме построить окружность произвольного радиуса с центром в точке А. | |
|
2 |
Ввести обозначения точек пересечения окружности. Активизировать панель Размеры и технологические обозначения, щелкнуть по кнопке Ввод текста и ввести обозначения вершины угла А и точек пересечения окружности со сторонами угла В и С. | |
|
3 |
Построить две окружности одинакового радиуса с центрами в точках В и С. Задать радиусы окружностей в ручном режиме. Точку пересечения окружностей обозначить E. | |
|
4 |
Через вершину угла А и точку пересечения окружностей Е провести прямую. Щелкнуть по кнопке Ввод отрезка и в автоматическом режиме последовательно указать точки А и Е. | |
|
7 |
Алгоритм построения биссектрисы неразвернутого угла выполнен. |
|
|
8 |
Сохранить чертеж. | |
Исследование модели.
С помощью геометрических теорем необходимо доказать, что построенный луч АЕ действительно является биссектрисой угла А.
Таким образом, демонстрируется возможность использования средств ИКТ для решения геометрических задач.
Познавательно о обучении:
Серединный треугольник и прямая Эйлера
Треугольник, полученный соединением середин сторон данного треугольника, назовем серединным треугольником. На рисунке A`B`C` есть срединный треугольник треугольника АВС. Рассмотрим так же две медианы AA` и BB`, пересекающиеся в точке G, две высоты треугольника ABC, пересекающиеся в точке H, и две в ...
Организация наблюдения за объектами природы
Помимо содержания чрезвычайно важно определить организационно-методическую форму проведения наблюдений с детьми за теми объектами природы, которые постоянно находятся возле них. Наблюдения лучше всего проводить в форме циклов. Обитатели уголка природы весь учебный год живут рядом с дошкольниками - ...
Особенности и сложности современных методик быстрого чтения
О.А.Андреев в книге «Учитесь быстро читать» предлагает использовать алгоритмы чтения. Дифференциальный алгоритм чтения сводится к 3 пунктам: 1) ключевые слова; 2) смысловые ряды; 3) доминанта - значение. «Ключевые слова несут основную смысловую нагрузку. Они обозначают признак предмета, состояние и ...