Организация проведения зачета

Страница 4

Учитель устно раскрывает содержание каждого задания.

I. 1. Запишите формулу нахождения координат вектора АВ по координатам его начала и конца.

II. 1. Запишите координаты середины отрезка MN через координаты его концов.

I. 2. Запишите формулу вычисления длины вектора по его координатам.

II. 2. Запишите формулу для вычисления расстояния между двумя точками.

I. II. 3. Установите, перпендикулярны ли данные векторы.

I. II. 4. Вокруг описана окружность. Укажите положение центра окружности при данном условии.

I. II. 5. Определите вид треугольника АВС, если его вершины имеют данные координаты.

Терминологический диктант. Положительная полуось, аппликата, коэффициенты разложения, тетраэдр, расчет, рассчитать, ненулевые векторы, коллинеарные, компланарные, скалярное произведение, расстояние.

Билеты к уроку-зачету

№1

1.Координаты вектора. Действия с векторами, заданными своими координатами (доказать для суммы векторов).

2.Треугольник АВС задан координатами вершин А (0;2;-1), B(1;-7;0),

С (-1;0;3). Докажите, что ABC - прямоугольный.

№2

1.Вычисление координат вектора по координатам его начала и конца (вывод формулы).

2. Прямая задана точками А(3;-1:2) и В(-1;1;2). Найти угол между прямой АВ и плоскостью хОу.

№3

1.Определение скалярного произведения векторов. Свойства скалярного произведения векторов, вытекающие из определения.

2.Ребро куба ABCDА1В1С1D1, равно . Вычислите угол между прямыми AB1 и BC1; найдите расстояние между серединами отрезков AB1 и BC1.

№4

1.Скалярное произведение векторов в координатах (вывод формулы). Следствия.

2.Длина ребра куба ABCDA1B1C1D1 равна а. Вычислите скалярное

Произведение векторов A1D и CC1; A1D и CB1.

№5

1.Свойства скалярного умножения векторов,

2.Дан куб АВСDA1B1C1D1. Точка К – середина ребра AA1, L – середина AD, М – центр грани CC1DD1. Доказать, что прямые КМ и B1L взаимно перпендикулярны.

Карточки с задачами для ассистентов

Указание: Вам предлагается решить 5 задач. Если вы в сумме наберете от 21 до 27 очков, то все ассистенты получат оценку «5», если вы наберете до 21 очка, то все получают оценку «4».

№1

Дана прямая треугольная призма ABCDA1B1C1D1 – равнобедренный, AC=CB=a, ACB = 120°, ребро BB1=a. Найти расстояние между серединами отрезков АС и BB1. Решите задачу, используя метод координат.(6 очков)

№2

Вектор компланарен векторам (1;-1;0) и (1;0;-1). Известно, что , . Найдите координаты вектора . (6 очков)

№ 3

Треугольник задан координатами своих вершин А (2;0;-1), В(3;;0), С(4;0;-1)

а) Найдите длину медианы данного треугольника, проведенной из вершины А;

б) Найдите величину . (6 очков)

№ 4

На стороне МК треугольника МКЕ взята точка Р такая, что МР=РК. Вычислите длину отрезка РЕ, если МЕ=2а, ЕК=3а, =120°. (5 очков)

Страницы: 1 2 3 4 5 6 7

Познавательно о обучении:

Типы социально-досуговых учреждений
(основные) семья, детский сад, учебные заведения семья, парки, средние школы, школы-интренаты, летние лагеря, библиотеки, специнтернаты, ПТУ, колледжи, технические станции, техникумы, вузы и т.д. культурно-досуговые центры, физкультурно-спортивные комплексы, музыкальные, хореографические, художеств ...

Человекоцентрированный подход в образовании
Эта модель личностно-ориентированного образования принадлежит известному американскому психотерапевту К. Роджерсу, который считает, что педагогика, как и терапия, должна помогать человеку быть здоровым, то есть быть самим собой, иметь адекватные представления о своих возможностях и постоянно развив ...

Типологические и возрастные особенности развития личности
Человек обладает огромным количеством степеней свободы – возбуждения и торможения, условных рефлексов и других психических процессов. Это огромный потенциал для» «величайших вариантов приспособлений» человека к разнообразным экстремальным условиям жизни, труда и общественной деятельности, выполнять ...

Категории

Copyright © 2026 www.fiteducation.ru