Учитель устно раскрывает содержание каждого задания.
I. 1. Запишите формулу нахождения координат вектора АВ по координатам его начала и конца.
II. 1. Запишите координаты середины отрезка MN через координаты его концов.
I. 2. Запишите формулу вычисления длины вектора по его координатам.
II. 2. Запишите формулу для вычисления расстояния между двумя точками.
I. II. 3. Установите, перпендикулярны ли данные векторы.
I. II. 4. Вокруг ![]()
описана окружность. Укажите положение центра окружности при данном условии.
I. II. 5. Определите вид треугольника АВС, если его вершины имеют данные координаты.
Терминологический диктант. Положительная полуось, аппликата, коэффициенты разложения, тетраэдр, расчет, рассчитать, ненулевые векторы, коллинеарные, компланарные, скалярное произведение, расстояние.
Билеты к уроку-зачету
№1
1.Координаты вектора. Действия с векторами, заданными своими координатами (доказать для суммы векторов).
2.Треугольник АВС задан координатами вершин А (0;2;-1), B(1;-7;0),
С (-1;0;3). Докажите, что
ABC - прямоугольный.
№2
1.Вычисление координат вектора по координатам его начала и конца (вывод формулы).
2. Прямая задана точками А(3;-1:2) и В(-1;1;2). Найти угол
между прямой АВ и плоскостью хОу.
№3
1.Определение скалярного произведения векторов. Свойства скалярного произведения векторов, вытекающие из определения.
2.Ребро куба ABCDА1В1С1D1, равно
. Вычислите угол между прямыми AB1 и BC1; найдите расстояние между серединами отрезков AB1 и BC1.
№4
1.Скалярное произведение векторов в координатах (вывод формулы). Следствия.
2.Длина ребра куба ABCDA1B1C1D1 равна а. Вычислите скалярное
Произведение векторов A1D и CC1; A1D и CB1.
№5
1.Свойства скалярного умножения векторов,
2.Дан куб АВСDA1B1C1D1. Точка К – середина ребра AA1, L – середина AD, М – центр грани CC1DD1. Доказать, что прямые КМ и B1L взаимно перпендикулярны.
Карточки с задачами для ассистентов
Указание: Вам предлагается решить 5 задач. Если вы в сумме наберете от 21 до 27 очков, то все ассистенты получат оценку «5», если вы наберете до 21 очка, то все получают оценку «4».
№1
Дана прямая треугольная призма ABCDA1B1C1D1 – равнобедренный, AC=CB=a,
ACB = 120°, ребро BB1=a. Найти расстояние между серединами отрезков АС и BB1. Решите задачу, используя метод координат.(6 очков)
№2
Вектор
компланарен векторам
(1;-1;0) и
(1;0;-1). Известно, что
,
. Найдите координаты вектора
. (6 очков)
№ 3
Треугольник задан координатами своих вершин А (2;0;-1), В(3;
;0), С(4;0;-1)
а) Найдите длину медианы данного треугольника, проведенной из вершины А;
б) Найдите величину
. (6 очков)
№ 4
На стороне МК треугольника МКЕ взята точка Р такая, что МР=РК. Вычислите длину отрезка РЕ, если МЕ=2а, ЕК=3а,
=120°. (5 очков)
Познавательно о обучении:
Результаты и анализ использования метода проектов старшеклассниками на уроках
технологии
Результаты и анализ использования метода проектов старшеклассниками на уроках технологии позволил нам определить необходимость включения в процесс дифференцированного подхода к учащимся. Поскольку способности учащихся различны, важно проводить дифференцированное обучение. Способные дети могут прове ...
Серединный треугольник и прямая Эйлера
Треугольник, полученный соединением середин сторон данного треугольника, назовем серединным треугольником. На рисунке A`B`C` есть срединный треугольник треугольника АВС. Рассмотрим так же две медианы AA` и BB`, пересекающиеся в точке G, две высоты треугольника ABC, пересекающиеся в точке H, и две в ...
Методика проведения и результаты экспериментальной работы по апробации
основ преобразовательной деятельности учащихся, разработанных на уроках
технологии
Цели экспериментальной работы: - провести экспериментальное исследование на развитие политехнических знаний, умений и навыков по разделу «Технология обработки конструкционных материалов»; - провести диагностику усвоения материала; - закрепить полученные знания, умения и навыки. Гипотеза: При обучен ...